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概要
本講演では，3 次元反ド・ジッター空間の特異点を許容する時間的平均曲率 1 曲面 (時間的

CMC1曲面) のクラスとして時間的 CMC1面を導入し，特異点に関する結果を紹介する．特に，
時間的 CMC1 面は折り目特異点を許容しないこと，また一般化錐状特異点が共役曲面における
5/2-カスプ辺と対応することやカスプ状 S1 特異点が共役曲面におけるジェネリックなカスプ状
バタフライと対応することを述べる．

1 導入
3次元ミンコフスキー空間 R3

1 の時間的極小曲面は，3次元ユークリッド空間 R3 の極小曲面の類
似として，Weierstrass型の表現公式をもつ．直和 R ⊕ jR に j2 = 1, j1 = 1j = j を満たす積をも
つ可換環を Čで表し，パラ複素数代数という．U を Č上の単連結領域，g を U 上の p-正則関数, ω

を U 上の p-正則 1次微分形式とするとき

f = Re

∫
(−1− g2, j(1− g2), 2g)ω

により時間的極小曲面が与えられる (Konderak [10]). このとき，(g, ω)の組をWeierstrass デー
タと呼ぶ. Takahashi [12] は極小面と呼ばれる，特異点を許容する時間的極小曲面のクラスを導入し
た (cf. Akamine [1])．

カスプ辺 ツバメの尾
カスプ状
交差帽子

R2 の領域 U から 3次元多様体M3 への C∞ 級写像 f : U → M3 に対して，点 p ∈ U が カスプ辺
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であるとは，f の pにおける写像芽が，fce(u, v) := (u2, u3, v)の原点における写像芽とA-同値である
ときをいう．同様に，点 p ∈ U がツバメの尾 (resp.カスプ状交差帽子)であるとは，f の pにおける写
像芽が fsw(u, v) := (3u4+u2, 4u3+2uv, v) (resp. fccr(u, v) := (u, v2, uv3)) の原点における写像芽
と A-同値であるときをいう．ここで 2つの写像芽 f : (U, p) → (M3, f(p)), g : (R2, q) → (R3, g(q))

が A-同値であるとは，局所微分同相写像芽 φ : (U, p) → (R2, q), ϕ : (M3, f(p)) → (R3, g(q)) が存
在して, g = ϕ ◦ f ◦ φ−1 を満たすときをいう.

一方，一般的に現れる特異点以外に極小面に現れる特異点として，錐状特異点，折り目特異点，カ
スプ状バタフライ，カスプ状 S+

1 特異点が知られている．ここで，錐状特異点 (resp.折り目特異点)

とは, fcone(u, v) := v(cosu, sinu, 1) (resp. ffold(u, v) := (u, v2, 0)) と A-同値な特異点である．さら
に，カスプ状 S1 特異点 (resp. カスプ状バタフライ)とは, fcs±1

(u, v) := (u, v2, v3(u2 ± v2)) (resp.

fbu(u, v) := (u, 4v5 + uv2, 5v4 + 2uv)) と A-同値な特異点である．

一般化錐状特異点 折り目特異点

カスプ状 S+
1 特異点 カスプ状 S−

1 特異点
カスプ状バタフライ

Weierstrass データを (g, jω)に取り換えることで，共役な時間的極小曲面

f ♯ = Im

∫
(−1− g2, j(1− g2), 2g)ω

が定義される．次のような極小面における特異点の双対性が知られている. U をパラ複素平面 Čの
単連結領域とし，f : U → R3

1 を極小面，f ♯ : U → R3
1 を f の共役極小面，p ∈ U を f の特異点とす

る．このとき以下が成り立つ：

(1) f が p ∈ U においてカスプ辺をもつための必要十分条件は，f ♯ が p ∈ U においてカスプ辺を
もつことである [12]．



(2) f が p ∈ U においてツバメの尾をもつための必要十分条件は，f ♯ が p ∈ U においてカスプ状
交差帽子をもつことである [12]．

(3) f が p ∈ U において一般化錐状特異点をもつための必要十分条件は，f ♯ が p ∈ U において折
り目特異点をもつことである [9]．

(4) f が p ∈ U においてカスプ状バタフライをもつための必要十分条件は，f ♯ が p ∈ U において
カスプ状 S+

1 特異点をもつことである.さらに，極小面は S−
1 特異点を許容しない [2]．

本講演では，3次元反ド・ジッター空間 H3
1 の特異点を許容する時間的平均曲率 1曲面 (Constant

Mean Curvature 1, CMC1) を考察する．ここで，中間符号をもつ 4 次元擬ユークリッド空間
R4

2 = (R4, ⟨ , ⟩) (⟨x, x⟩ = x2
0 + x2

1 − x2
2 − x2

3) に対し，

H3
1 := {x ∈ R4

2 | ⟨x, x⟩ = −1}

を 3 次元反ド・ジッター空間という．H3
1 における時間的平均曲率 1 曲面 (時間的 CMC1 曲面)

は，3 次元ミンコフスキー空間 R3
1 の時間的極小曲面と局所等長対応をもつことが知られている

(Lawson-Guichard 対応)．よって，H3
1 の時間的 CMC1曲面を理解するためには，特異点を許容し

た枠組みで考えることが重要である．Yasumoto [14] は，3次元反ド・ジッター空間 H3
1 において特

異点を持つ時間的 CMC1曲面を考察し，極小面の双対性 (1), (2) に対応するようなカスプ辺, ツバ
メの尾, カスプ状交差帽子に対する特異点の双対性を導いた．以上の結果から，極小面の双対性 (3),

(4) と同様の双対性が，H3
1 の場合にも成り立つのかという自然な問題が生じる.

筆者は H3
1 の特異点を許容する時間的 CMC1曲面のクラスとして，時間的 CMC1面を導入し，そ

れらの特異点，とくに，特異点の双対性を考察した．

2 主結果
[8] では，3次元ミンコフスキー空間 R3

1 の極小面に対応するクラスとして 3次元反ド・ジッター空
間 H3

1 の時間的 CMC1 面を導入した．
定義 1. U を Č上の単連結領域，z0 ∈ U を基点とする．g : U → Čを p-正則関数，ω = ω̂ dz を U

上 p-正則 1次微分形式とする. このとき,

F ′ = F

(
g −g2

1 −g

)
ω̂, F (z0) =

(
1 0
0 1

)
の解 F : U → SL(2, Č)に対し，

f(z) := F (z)e3F (z)∗ e3 :=

(
1 0
0 −1

)
により定まる写像 f : U → H3

1 を一般化時間的 CMC1曲面という．
(g, ω) の組を Weierstrass データと呼ぶ．また，(g, jω) に対応するものを f の共役時間的

CMC1曲面といい，f ♯ と表す．
注意 2. H3

1 のはめこまれた時間的 CMC1曲面は局所的にこのように与えられる [14]．



一般化時間的 CMC1曲面の特異点について，次が成り立つ．

命題 3 ([8]). 一般化時間的 CMC1曲面 f : U → H3
1 の特異点 p ∈ U について，(1)または (2)が成

り立つ．
(1) g(p) g(p) = 1, (2) ω(p)ω(p) = 0.

(1)を満たす特異点 pを g-特異点, (2)を満たす特異点 pを ω-特異点という．時間的 CMC1面を
次のように定義する．
定義 4 ([8]). ω-特異点をもたない一般化時間的 CMC1曲面を時間的 CMC1 面という．
以上の設定のもと，次が成り立つ．

定理 A ([8]). f : U → H3
1 を時間的 CMC1 面，f ♯ : U → H3

1 を共役時間的 CMC1面とする．f が
p ∈ U において一般化錐状特異点をもつための必要十分条件は，f ♯ が p ∈ U において 5/2-カスプ
辺をもつことである．

定理 A により, 時間的 CMC1面は極小面における特異点の双対性 (3)と同様の性質を持たないこ
とが明らかになった. このことにより, 折り目特異点をもつ時間的 CMC1面が存在し得るかという問
題が生じるが，次が成り立つことがわかった．

定理 B ([8]). H3
1 の時間的 CMC1面は折り目特異点を許容しない.

さらに，極小面における特異点の双対性 (4) に対応するものとして，ジェネリックなカスプ状バタ
フライを定義し，次を示した．

定理 C ([8]). f : U → H3
1 を時間的 CMC1 面，f ♯ : U → H3

1 をその共役時間的 CMC1 面とする．
このとき，f が p ∈ U においてカスプ状 S1 特異点をもつための必要十分条件は，f ♯ が p ∈ U に
おいてジェネリックなカスプ状バタフライをもつことである．

R3
1 の極小面の場合にはカスプ状 S−

1 特異点は存在しないが [2]，H3
1 の時間的 CMC1面でカスプ状

S−
1 特異点を持つ例が存在する (例 16 参照)．

3 主結果の証明：Weierstrass データを用いた特異点の判定条件
定理の証明に用いた定義や定理は以下の通りである．

φ :=
gz
g2ω̂

, Dφ :=
g

gz
φz, D2φ :=

g

gz
(Dφ)z

とおく．このとき，次が成り立つ．

事実 5 (cf. Yasumoto [14]). U を Čの単連結領域とし，f : U → H3
1 を時間的 CMC1面とする．f

のWeierstrassデータを (g, ω)とし，ω = ω̂dz と定める．このとき，以下が成り立つ．

(1) 特異点 pが非退化な特異点であるための必要十分条件は dg(p) ̸= 0を満たすことである.

(2) 特異点 pにおいて f が波面であるための必要十分条件は，Reφ(p) ̸= 0を満たすことである.



(3) 特異点 p において f がカスプ辺と A-同値であるための必要十分条件は，Reφ(p) ̸= 0 かつ
Imφ(p) ̸= 0を満たすことである.

(4) 特異点 pにおいて f がツバメの尾と A-同値であるための必要十分条件は，φ(p) ∈ R \ {0}か
つ ReDφ(p) ̸= 0を満たすことである.

(5) 特異点 p において f がカスプ状交差帽子と A-同値であるための必要十分条件は，φ(p) ∈
jR \ {0}かつ ImDφ(p) ̸= 0を満たすことである.

定理 A は，次の定理 6 から従う．

定理 6 ([8]). 時間的 CMC1面 f : U → H3
1 はWeierstrass データ (g, ω) により与えられていると

する．特異点 p ∈ U が一般化錐状特異点であることと次は同値：

Reφ(p) ̸= 0, かつ あるδ > 0が存在して，任意の t ∈ (−δ, δ)に対して Imφ(γ(t)) = 0.

さらに，特異点 p ∈ U が 5/2-カスプ辺であることと次は同値：

Imφ(p) ̸= 0, かつ あるδ > 0が存在して，任意の t ∈ (−δ, δ)に対してReφ(γ(t)) = 0.

定理 A により, 時間的 CMC1面は極小面における特異点の双対性 (3)と同様の性質を持たないこ
とが明らかになった. このことにより, 折り目特異点をもつ時間的 CMC1面は存在し得るか，という
問題が自然に生じる. 定理 B は定理 6の 5/2-カスプ辺の判定条件を用いて証明した．

定理 7 ([8]). 時間的 CMC1面 f : U → H3
1 はWeierstrass データ (g, ω) により与えられていると

する．f が pにおいてカスプ状バタフライに A-同値であるための必要十分条件は、pにおいて

(1)Reφ ̸= 0, (2) Imφ = Re(Dφ) = 0, (3) Im(D2φ) ̸= 0

を満たすことである. また，f が pでカスプ状 S±
1 特異点と A-同値であるための必要十分条件は p

において

(1) Imφ(p) ̸= 0, (2) Reφ(p) = ImDφ(p) = 0,

(3)

{
S+
1 ならば ReD2φ(p)

(
12− ReD2φ(p)

)
> 0,

S−
1 ならば ReD2φ(p)

(
12− ReD2φ(p)

)
< 0

を満たすことである.

ここでジェネリックなカスプ状バタフライを定義する.

定義 8 ([8]). ImD2φ(p) ̸= 12 を満たすとき, カスプ状バタフライがジェネリックであると言う.

定理 7より定理 C が導かれる．

4 実Weierstrassデータを用いた時間的 CMC1面の構成
[8] では，実Weierstrassデータを用いた H3

1 の時間的 CMC1曲面に対する Bryant型表現公式を
構成した．これにより，定理 6,定理 7で得た特異点の判定条件を実Weierstrass データを用いて再



構成した．一般に，p-正則Weierstrassデータを用いて時間的 CMC1面の具体例を考えることは容
易ではないため，実Weierstrassデータを用いることで曲面の具体例を与えた．

g1 を開区間 I 上の C∞ 級関数，ω1 = ω̂1 du を開区間 I 上の C∞ 級 1次微分形式，g2 を開区間 J

上の C∞ 級関数，ω2 = ω̂2 dv を開区間 J 上の C∞ 級 1次微分形式とする．

F−1
1 (F1)u =

(
−g1 −1
g21 g1

)
ω̂1, F−1

2 (F2)v =

(
g2 −1
g22 −g2

)
ω̂2

の解を F1 : I → SL(2,R), F2 : J → SL(2,R)とする．このとき，
f(u, v) := F1(u)F2(v)

t

で定義される写像 f : I × J → H3
1 は，H3

1 の一般化された時間的 CMC1 曲面を与える．さらに，
ω1, ω2 が零点を持たないとき，f は時間的 CMC1 面を定める．ここで，H3

1 を SL(2,R) と同一視
する．
定義 9. (g1, g2, ω1, ω2)を，H3

1 における時間的 CMC1面 f の実Weierstrassデータという．
共役時間的 CMC1面 f ♯ の実Weierstrassデータは，(g1, g2, ω1,−ω2)により与えられる．

4.1 実Weierstrassデータを用いた特異点の判定条件
定理 10 ([8]). 時間的 CMC1面 f : U → H3

1 は実Weierstrassデータ (g1, g2, ω1, ω2) により与えら
れているとする．このとき，次が成り立つ：

(1) p = (a, b) ∈ U が f の特異点であるための必要十分条件は，g1(a)g2(b) = 1 を満たすことで
ある．

(2) 特異点 p ∈ U において f がカスプ辺に A-同値であるための必要十分条件は，
(g1)u
(g1)2ω̂1

− (g2)v
(g2)2ω̂2

̸= 0,
(g1)u
(g1)2ω̂1

+
(g2)v

(g2)2ω̂2
̸= 0

が pにおいて成り立つことである．
(3) 特異点 p ∈ U において f がツバメの尾に A-同値であるための必要十分条件は，

(g1)u
(g1)2ω̂1

− (g2)v
(g2)2ω̂2

̸= 0,
(g1)u
(g1)2ω̂1

+
(g2)v

(g2)2ω̂2
= 0,

g1
(g1)u

(
(g1)u
g21ω̂1

)
u

− g2
(g2)v

(
(g2)v
g22ω̂2

)
v

̸= 0

が pにおいて成り立つことである．
(4) 特異点 p ∈ U において f がカスプ状交差帽子に A-同値であるための必要十分条件は，

(g1)u
(g1)2ω̂1

− (g2)v
(g2)2ω̂2

= 0,
(g1)u
(g1)2ω̂1

+
(g2)v

(g2)2ω̂2
̸= 0

g1
(g1)u

(
(g1)u
g21ω̂1

)
u

+
g2

(g2)v

(
(g2)v
g22ω̂2

)
v

̸= 0

が pにおいて成り立つことである．



定理 11 ([8]). 時間的 CMC1 面 f : U → H3
1 は 実Weierstrass データ (g1, g2, ω1, ω2) により与え

られているとする．γ(t)を f の p = γ(0)を通る特異曲線とする．このとき，f が pにおいて一般化
錐状特異点に A-同値であるための必要十分条件は次で与えられる：

(1) p において (g1)u
g21ω̂1

− (g2)v
g22ω̂2

̸= 0, かつ，

(2) ある δ > 0 が存在して，任意の t ∈ (−δ, δ)に対して，γ(t) に沿って (g1)u
g21ω̂1

+
(g2)v
g22ω̂2

= 0.

さらに，f が p において 5/2-カスプ辺と A-同値であるための必要十分条件は次で与えられる：

(1) p において (g1)u
g21ω̂1

+
(g2)v
g22ω̂2

̸= 0, かつ，

(2) ある δ > 0 が存在して，任意の t ∈ (−δ, δ)に対して，γ(t) に沿って (g1)u
g21ω̂1

− (g2)v
g22ω̂2

= 0.

定理 12 ([8]). 時間的 CMC1 面 f : U → H3
1 は 実Weierstrass データ (g1, g2, ω1, ω2) により与え

られているとする．f が p においてカスプ状バタフライに A-同値であるための必要十分条件は，p

において次の (1), (2), (3) が成り立つことで与えられる：

(1)
(g1)u
g21ω̂1

− (g2)v
g22ω̂2

̸= 0,

(2)
(g1)u
g21ω̂1

+
(g2)v
g22ω̂2

= 0,
g1

(g1)u

(
(g1)u
g21ω̂1

)
u

− g2
(g2)v

(
(g2)v
g22ω̂2

)
v

= 0,

(3)
g1

(g1)u

(
g1

(g1)u

(
(g1)u
g21ω̂1

)
u

)
u

+
g2

(g2)v

(
g2

(g2)v

(
(g2)v
g22ω̂2

)
v

)
v

̸= 0.

さらに，f が p でカスプ状 S±
1 特異点と A-同値であるための必要十分条件は，pにおいて次の (1),

(2), (3) が成り立つことで与えられる：

(1)
(g1)u
g21ω̂1

+
(g2)v
g22ω̂2

̸= 0,

(2)
(g1)u
g21ω̂1

− (g2)v
g22ω̂2

= 0,
g1

(g1)u

(
(g1)u
g21ω̂1

)
u

+
g2

(g2)v

(
(g2)v
g22ω̂2

)
v

= 0,

(3) S+
1 ならば，0 <

g1
(g1)u

(
g1

(g1)u

(
(g1)u
g21ω̂1

)
u

)
u

− g2
(g2)v

(
g2

(g2)v

(
(g2)v
g22ω̂2

)
v

)
v

< 12,

S−
1 ならば，0 >

g1
(g1)u

(
g1

(g1)u

(
(g1)u
g21ω̂1

)
u

)
u

− g2
(g2)v

(
g2

(g2)v

(
(g2)v
g22ω̂2

)
v

)
v

または g1
(g1)u

(
g1

(g1)u

(
(g1)u
g21ω̂1

)
u

)
u

− g2
(g2)v

(
g2

(g2)v

(
(g2)v
g22ω̂2

)
v

)
v

> 12.

4.2 時間的 CMC1面の具体例
最後に，実Weierstrassデータを用いて構成した時間的 CMC1面の具体例を紹介する．
例 13 (Enneper 型時間的 CMC1面). R× := R \ {0}とし，F1, F2 : R× → SL(2,R)を

F1(u) :=

(
cosu sinu− u cosu
− sinu u sinu+ cosu

)
, F2(v) :=

(
cos v sin v − v cos v
− sin v v sin v + cos v

)



とおく．実Weierstrass データは

g1 = − 1

u
, ω1 = −u2, g2 =

1

v
, ω2 = −v2

となり，時間的 CMC1面 f(u, v) := F1(u)F2(v)
t に対して，特異曲線 γ(u) = (u,−1/u)上で γ(u)

(u ̸= ±1)は全てカスプ辺である．さらに，γ(u) (u = ±1)はどちらもツバメの尾である．
例 14 (Enneper 型時間的 CMC1面の共役曲面 [8]). R× := R \ {0}とし，F1, F2 : R× → SL(2,R)
を

F1(u) :=

(
cosu sinu− u cosu
− sinu u sinu+ cosu

)
, F ♯

2(v) :=

(
cosh v sinh v − v cosh v
sinh v cosh v − v sinh v

)
とおく．実Weierstrass データは

g1 = − 1

u
, ω1 = u2, g♯2 =

1

v
, ω♯

2 = v2

となり，時間的 CMC1 面 f ♯(u, v) := F1(u)F
♯
2(v)

t に対して，特異曲線 γ(u) = (u,−1/u)上で γ(u)

(u ̸= ±1)は全てカスプ辺である．さらに，γ(u) (u = ±1)はどちらもカスプ状交差帽子である．

左：Enneper 型時間的 CMC1面 (例 13)，右：Enneper 型時間的 CMC1面の共役曲面 (例 14).

例 15 (カテノイド型時間的 CMC1面，ヘリコイド型時間的 CMC1面 [8]). α, β > −1/2をみたす
実数 α, β に対し，F1, F2 : R → SL(2,R)を

F1(u) =
1√

2α+ 1

(
(α+ 1)eαu α e(α+1)u

α e(−α−1)u (α+ 1) e−αu

)
,

F2(v) =
1√

2β + 1

(
−(β + 1)eβv β e(β+1)v

β e(−β−1)v −(β + 1) e−βv

)
とおく．実Weierstrass データは，

g1(u) = e−u, g2(v) = e−v, ω1 = −α(α+ 1)eu du, ω2 = β(β + 1)ev dv



となる．時間的 CMC1 面 f(u, v) := F1(u)F2(v)
t に対し，特異曲線 γ(u) = (u,−u)上で

(g1)u
g21ω̂1

− (g2)v
g22ω̂2

=
1

α(α+ 1)
+

1

β(β + 1)
,

(g1)u
g21ω̂1

+
(g2)v
g22ω̂2

=
1

α(α+ 1)
− 1

β(β + 1)

より，

(a) α = β のとき，γ(u)は一般化された錐状特異点 (このとき，f をカテノイド型時間的 CMC1

面と呼ぶ)．
(b) α =

−1 +
√

1− 4β2 − 4β

2
(−1

2
< β <

√
2− 1

2
) のとき，γ(u) は 5/2-カスプ辺 (このとき，

f をヘリコイド型時間的 CMC1面と呼ぶ)．
(c) (a), (b) 以外のとき,カスプ辺

である．

左：カテノイド型時間的 CMC1面，右：ヘリコイド型時間的 CMC1面の共役曲面 (例 15).

カスプ状バタフライとカスプ状 S±
1 特異点をもつ時間的 CMC1面の存在は次のように示される．

例 16 ([8]). 実数 c0, c1, c2, d0, d1, d2 (c0, d0 ̸= 0)に対して，h1, h2 : R → Rを

h1(u) = c0 + c1u+
c2
2
u2, h2(v) = d0 + d1v +

d2
2
v2

とおく．I := {u ∈ R | h1(u) ̸= 0}, J := {v ∈ R | h2(v) ̸= 0} と定める．実Weierstrassデータを

g1 = eu, ω̂1(u) =
1

euh1(u)
, g2(v) = ev, ω̂2 =

1

evh2(v)

とおく．このとき，特異点 (u, v) = (0, 0)は

(a) c0 = −d0 かつ c1 = d1 かつ c2 + d2 ̸= 0のときカスプ状バタフライ，
(b1) c0 = d0 かつ c1 = −d1 かつ 0 < c2 − d2 < 12のとき，カスプ状 S+

1 特異点，



(b2) c0 = d0 かつ c1 = −d1 かつ c2 − d2 < 0または 12 < c2 − d2 のとき，カスプ状 S−
1 特異点

となる．
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